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A vector grouping algorithm for liquid crystal tensor � eld
visualization

YANG-MING ZHU* and PAUL A. FARRELL

Department of Computer Science, Kent State University, Kent, Ohio 44242, USA

(Received 14 January 2002; accepted 26 June 2002 )

Tensor � elds are at the heart of many science and engineering disciplines. Many tensor
visualization methods separate the tensor into component eigenvectors and visualize those
instead. Eigenvectors are normally ordered according to their eigenvalues: the eigenvectors
corresponding to the smallest, median, or largest eigenvalues are in their corresponding
groups. We show that this ordering strategy is undesirable for liquid crystal systems and
propose a new approach, where the vectors are grouped to minimize some local energy. The
grouping process is reminiscent of the epitaxial expansion in the anchoring of liquid crystals
on a surface. The new algorithm is successfully applied to a liquid crystal system to study the
biaxiality structure near a defect.

1. Introduction ing to the median eigenvalues are in another group, and
those corresponding to the smallest eigenvalues are inTensor data sets are at the heart of many science

and engineering areas such as � uid dynamics, but few yet another group. The separated vector � elds can be
further processed as in the topological representationmethods have been proposed to visualize and understand

the richness of these � elds [1, 2]. The � rst method paradigm, where topological skeletons are emphasized
[6]. A point where two or three eigenvalues are equal,proposed to visualize a tensor � eld is to represent the

tensor by an ellipsoid, the orientations of which are is called degenerate. Tensor � eld lines or hyperstreamline
trajectories are calculated in each separated vector � elddetermined by the eigenvectors, and the relative lengths

of whose axes are determined by the eigenvalues [3]. along those degenerate points. Those calculated topo-
logical skeletons can be rendered together or separately.The generalization of this approach is to use a local

icon to represent the tensor at various points in space. This approach greatly reduces the display clutter and
has proven to be useful in some areas.As an alternative, scalar components can be analysed

and displayed in 2D or 3D form, which is ineVective In our research we found that the vector ordering
strategy, i.e. separating eigenvectors according to theand may discard valuable information about the data.

Motivated by their previous work on the topological magnitude of the corresponding eigenvalues, is inappro-
priate for liquid crystal tensor � eld visualization. Torepresentation of vector � elds [4, 5], Hesselink and his

co-workers recently proposed a topological approach remedy this, a vector grouping algorithm is developed
in this paper based on the energy minimization principle.[6, 7] which can capture the global structure of a tensor

� eld. After the eigenvectors are properly grouped, any vector-
rendering algorithms, including the topological skeletons,A 3D tensor is a 3×3 matrix. A 3×3 matrix can

be uniquely represented by three eigenvalues and their can be applied to the grouped vector � elds.
The remainder of the paper is organized as follows.corresponding eigenvectors. The visualization of tensor

� elds thus can be reduced to the visualization of three Section 2 describes the vector grouping algorithm with a
brief discussion of its physics origin. Section 3 illustratesvector � elds, and any vector visualization method can

be applied to these separated vector � elds. In current two examples to demonstrate that the conventional
vector ordering scheme is inappropriate whereas thepractice [6, 7], the vector � elds are separated according

to their eigenvalues, i.e. eigenvectors corresponding to new strategy works well.
the largest eigenvalues are in a group, those correspond-

2. Vector grouping algorithm
Liquid crystals have diVerent phases [8]. The nematic*Author for correspondence. Current address: Nuclear

phase is studied most and is the focus of this paper. TheMedicine Division, Philips Medical Systems, 595 Miner Road,
Cleveland, Ohio 44143, USA; e-mail: yzhu@computer.org orientation of liquid crystals can be abstracted by a
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1260 Y.-M. Zhu and P. A. Farrell

director � eld n, a unit vector de� ned in space. The University, on a 16 384 processor 512 Mbyte memory

thermal average of n gives the director. If the director Wavetracer DTC SIMD machine for a 2D slab geo-
� eld is not a smooth function of spatial coordinates, the metry, and on a distributed network of workstations
singular points and lines are called defects. For liquid using MPI (Message Passing Interface).
crystals, n and - n are equivalent. The visualization of tensor � elds can be reduced to

Traditionally liquid crystals are described by a vector the visualization of three vector � elds. To visualize these
� eld [8]. That implies that liquid crystals are uniaxial. vector � elds, they � rst have to be grouped. The idea of our
However, experimental results indicate that liquid crystals vector grouping algorithm is to minimize the direction
may be biaxial [8, 9]. Theoretical results also show that, change in each vector group. For two unit vectors, if
close to a topological defect, the liquid crystal is biaxial their directions diVer slightly, their inner product has a
[10]. The vector representation is inadequate for this large value (close to 1). Assume eigenvalues l1 , l2 , and
biaxial � eld. Instead a tensor � eld must be used. l3 and their corresponding unit eigenvectors u, v, and w

The ordering of liquid crystals is described by the are given in space (xi , yj , zk ), i, j, k=0, 1, … , N - 1. The
ordering matrix Qab=1/2 á3n

a
n
b

- dab
ñ, where a, b=x, y, z algorithm intends to group vectors along a line, grow

are indices referring to the laboratory frame, and d is a the ordering in a plane and then into the bulk. It has
Kronecker symbol de� ned as d=1 if a=b and zero the following steps:
otherwise. In an explicit matrix form, Q=1/2 á3nnT - I ñ ,
where T indicates the transpose and I is a unit matrix. (1) At (x0 , y0 , z0 ), pick three eigenvectors arbitrarily
The tensor Q is traceless and symmetric. If all its and label them as U0,0,0 , V0,0,0 , and W0,0,0 .
eigenvalues are equal, it is an isotropic liquid. If two of (2) For i=1, 2, … , N - 1, and for the six permutations
them are equal, it is a uniaxial nematic. If none of them of eigenvectors (Ui,0,0 , Vi,0,0 , Wi,0,0 ): (u, v, w), (u, w, v),
are equal, it is biaxial. Liquid crystals are uniaxial in most (v, u, w), (v, w, u), (w, u, v), or (w, v, u), compute
cases. Thus, in liquid crystal tensor � eld visualization, the

uniaxial case is considered normal. If defects are involved, (Ui- 1,0,0 , Ui,0,0 )2+ (Vi- 1,0,0 , Vi,0,0 )2
then some biaxial or isotropic regions are embedded in

+ (Wi - 1,0,0 , Wi,0,0 )2the uniaxial background. The changes of eigenvalues

in space are also of interest.
where (a, b) is the inner product of vector a andThe bulk free energy density of a liquid crystal system,
b. Pick the permutation that has the largest valueaccording to the Landau–de Gennes theory, is
and swap the involved eigenvalues and eigen-

vectors accordingly. For example, if (w, u, v) gives
fbulk=

1
2

L 1Q
ab,c

Q
ab,c+

1
2

L 2Q
ab,b

Q
ac,c+

1
2

L 3Q
ab,b

Q
ac,b the largest value, then swap u and w � rst and then

swap u and v.

(3) For i=0, 1, … , N - 1, j=1, 2, … , N - 1, and for+
1
2

A tr (Q2 ) -
1
3

B tr (Q3 )+
1
4

C tr (Q2 )2
the six permutations of (U, V , W ) at (xi , yj , z0 ),

compute

+
1
5

D tr (Q2 ) tr (Q3 )+
1
6

M tr (Q3 )2+
1
6

Mê tr (Q2 )3
å

# x,y $

(Ux,y,0 , Ui,j,0 )2+ (Vx,y,0 , Vi,j,0 )2

- DxH
a
Q

ab
H

b
- DeEa

Q
ab

E
b + (Wx,y,0 , Wi,j,0 )2

where traditional physics conventions are used, i.e.
where áx, yñ = (i - 1, j - 1), (i, j - 1), (i+1, j - 1).summation over repeated indices is implied and indices
Pick the permutation that has the largest value andseparated by commas indicate partial derivatives with
swap the involved eigenvalues and eigenvectorsrespective to the index after the comma. Here, L 1 , L 2 ,
accordingly. If some neighbours of (xi , yj , z0 ) areL 3 , A, B, C, D, M, Mê , H, E, De, Dx are physical
missing, the associated terms are dropped out.constants.

(4) For i = 0, 1, … , N - 1, j =0, 1, … , N - 1, k =To � nd the stable con� guration of a liquid crystal
1, 2, … , N - 1, and for the six permutations ofsystem, one needs to minimize the Landau–de Gennes
(U, V , W ) at (xi , yj , zk ), computeenergy numerically. The computation of this system is

challenging. It is desirable to implement the solver on a

parallel machine, or on a distributed network of work- å
# x,y,z$

(Ux,y,z , Ui,j,k)
2+ (Vx,y,z , Vi,j,k )2

stations. The solver has already been implemented,

in the Department of Computer Science at Kent State + (Wx,y,z , Wi,j,k )2
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1261A vector grouping algorithm for liquid crystal tensor � eld

where áx, y, z ñ= (i - 1, j - 1, k - 1), (i, j - 1, k - 1), be minimized, which is the same as the maximization
(i + 1, j - 1, k - 1), (i - 1, j, k - 1), (i, j, k - 1), criterion used in the grouping algorithm. It is worth
(i+1, j, k - 1), (i - 1, j+1, k - 1), (i, j+1, k - 1), noting that the approach used in the grouping algorithm
(i+1, j+1, k - 1). Pick the permutation that has is similar to the epitaxial growth of liquid crystals on a
the largest value and swap the involved eigen- surface [13].
values and eigenvectors accordingly. If some

neighbours of (xi , yj , zk ) are missing, the associated
terms are dropped out. 3. Examples and discussion

In this section, we show two examples of the appli-
In step (2) the ordering grows along a line. In step (3) cation of the vector grouping algorithm to liquid crystal

the ordering grows from a line. In step (3) one may tensor � eld visualization.
group the vectors in two edges and then grow the A 2D data set was generated on a SIMD machine
ordering into the bulk, or group around the four edges by implementing a numerical solver for the Landau–
� rst, then shrink to the centre. In step (4) the ordering de Gennes model (see § 2 for details). The scaled temper-
grows from a plane. All the nine neighbours from the ature was 0.65 and the data set size was 65×65. Two
previous plane of the current point are considered. defects of strength 1/2 were introduced in the calculation.
Alternatively, for simplicity, one may just consider � ve Figure 1 shows the rendering result, when eigenvectors
neighbours (i, j, k - 1), (i - 1, j, k - 1), (i+1, j, k - 1), are separated based on the relative strength of their
(i, j+1, k - 1), and (i, j - 1, k - 1). Again, there are other eigenvalues: eigenvectors corresponding to the largest,
alternatives, involving grouping the vectors along diVerent medium, and smallest eigenvalues are rendered to the right,
planes and from diVerent corners. middle and left viewports, respectively. In the follow-

Since u and - u are both eigenvectors of the corres- ing examples, the viewports and eigenvalues have the
ponding eigenvalue, we compute the squared inner pro- same relation, when the eigenvectors are ordered based
ducts while grouping. If, while grouping, one wants to on their eigenvalues. To reduce display clutter, only the
take into account the eigenvalues, lUi Õ 1

lUi
(Ui- 1 , Ui)

2
vectors on every other grid line in each dimension are

or a similar expression can be used. We also found that, displayed.
if the absolute value of the inner product is used, similar In the right viewport, the defects (singular points)
results can be achieved. introduced in the calculation are obvious and labelled

Our algorithm has a physical basis. For an Ising model with crosses. Those defects are also visible in the left
with two spin states (up and down), the Hamiltonian is viewport (but not labelled). The other four crosses
[11] labelled in the left viewport are artifacts due to the

grouping scheme used. Similar artifacts are also visible
H= - J å

# i,j$
Si× Sj in the middle viewport, at the corresponding positions

close to the four corners. The distortion is more pro-

nounced in an orthogonal projection with a stride of 1.where positive J is the molecular interaction, and Si is
These distortions are not favourable energetically. Inthe spin on lattice i. If the state is a vector, then
fact, at these corners, the biaxiality is weak and we

would not expect such a big distortion. Figure 2 showsH= - J å
# i,j $

(vi , vj) the rendering results using our grouping algorithm. The
situation in the four corners is signi� cantly improved.

where vi is the vector state on lattice i. For a liquid Our new grouping strategy eliminates the false defects.
crystal system, in particular [12], The eigenvalues are colour coded in � gures 1 and 2.

From the right and left viewports, one can clearly observe
H= - J å

# i,j $

(vi , vj )
2 that the eigenvalues decrease close to the defects. Since

eigenvalues re� ect the ordering of the � eld, the ordering

decreases on approaching the defects.
since - v and v are equivalent. Similarly, if the state is

A 3D data set was generated by a cluster of work-
described by a tensor, we de� ne a Hamiltonian as

stations, which implements the solver for the 3D case.

The size of this data set was 21×21×21. The scaledH= - J å
# i,j$

(ui , uj)
2+ (vi , vj )

2+ (wi , wj)
2

temperature was 0.328. Currently, we are unable to

generate bigger data sets, such as 100×100×100. A

defect, with strength one, was introduced at the centrewhere ui , vi , wi are the eigenvectors on lattice i. To

� nd the most favourable state, this Hamiltonian can of the � eld during the computation. Homeotropic surface
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1262 Y.-M. Zhu and P. A. Farrell

Figure 1. A 2D tensor � eld, with two defects, rendered according to the relative strength of eigenvalues. The stride is 2.

Figure 2. The same 2D tensor � eld as in � gure 1, rendered using the vector grouping algorithm. The stride is 2.

Figure 3. A 3D tensor � eld rendered according to the magnitude of the eigenvalues. The 12th slice parallel to the XOY plane is displayed.

Figure 4. The same 3D tensor � eld as in � gure 3 rendered with the vector grouping algorithm.
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1263A vector grouping algorithm for liquid crystal tensor � eld

anchoring conditions were assumed; that is, all major bours, whose vectors have not been grouped, are not
considered. An ideal implementation is to consider alleigenvectors are perpendicular to the surface and, more
neighbours, using a Monte Carlo type method, whichor less, they are in the radial direction in the bulk.
is much slower than the scheme presented here. If theFigure 3 shows the vector � elds at the 12th slice
grouping direction dependency is a problem, one canparallel to the XOY plane. The eigenvectors are separated
resort to a Monte Carlo method. In the case of liquidaccording to the magnitude of their eigenvalues. Since
crystals, the orientation is imposed by the surface con-the defect is at the centre of the � eld (in the 10th slice),
tacting them. Therefore growth from a particular directionwe expect to see no defects, which is con� rmed by the
seems appropriatemajor vector component in the right viewport. The major

eigenvectors are perpendicular to the paper surface in
the centre and tilt gradually until parallel to the paper

surface towards the con� ning boundary. The ordering 4. Conclusion
decreases close to the defect. The rendering in the left A 3×3 tensor can be uniquely expressed by three
and middle viewports is physically unacceptable. Along eigenvalues and their corresponding eigenvectors. The
the surface, these vector � elds should have a more or less visualization of the tensor � eld is equivalent to the
regular con� guration by a simple symmetry argument. visualization of three eigenvector � elds, without loss of
In the bulk, the change of vector direction should be any information. We have shown that it is not appro-
smooth. In the left and middle viewports of � gure 3, priate to separate the eigenvectors of liquid crystal tensor
however, the discontinuity of the vector � elds along the � elds based on the relative strength of their eigenvalues
edge and in the bulk is evident. and then render these eigenvector � elds. A vector group-

Figure 4 shows the rendering of the same slice, where ing strategy is proposed to minimize the directional
vector � elds were grouped using the vector grouping changes in each vector group. This strategy has been
algorithm. The vectors in the central plane (10th plane) successfully applied to grouping eigenvectors of 2D and
were grouped � rst and then grown in the two opposite 3D tensor � elds. The grouped eigenvectors make sense
directions in Z. In all these calculations, eigenvalues were from a physics standpoint, and any vector visualization
also taken into account as we discussed earlier. There techniques, including local icon depiction and streamline
is no diVerence detected in the right viewport, but the representation, can be subsequently used to render the
renderings of the left and middle viewports are noticeably grouped eigenvector � elds.
diVerent. Unlike the vectors in � gure 3, the vectors along

the edges exhibit a regular pattern in both the left and
Thanks are due to Dr Arden Ruttan, for providing

middle viewports. The regularity of the vector � eld in
the 3D data set. This work was supported by the

the middle viewport is greatly improved compared with
National Science Foundation under grant No. 9720221, by

that in � gure 4. The regularity of the vectors in the left
the NSF Advanced Liquid Crystalline Optical Material

viewport is also arguably improved. Some irregularity
(ALCOM) Science and Technology Center, and by an

in the left viewport is due to the eVect of projection. If
Ohio Board of Regents Research Challenge grant.

the vectors in the irregular region are replaced by those

in the middle viewport at the corresponding positions,

the irregularity still exists. The data set used here is
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